Trimmed Least Squares
نویسنده
چکیده
We consider two methods of defining a regression analogue to a trimmed mean. The first was suggested by Koenker and Bassett and uses their concept of regression quantiles. Its asymptotic behavior is completely analogous to that of a trimmed mean. The second method uses residuals from a preliminary estimator. Its asymptotic behavior depends heavily on the preliminary estimate; it behaves, in general, quite differently than the estimator proposed by Koenker and Bassett, and it can be rather inefficient at the normal model even if the percent trimming is small. However, if the preliminary estimator is the average of the two regression quantiles used with Koenker and Bassett's estimator, then the first and second methods are asymptotically equivalent for sYmmetric error distributions. •
منابع مشابه
The Trimmed Lasso: Sparsity and Robustness
Nonconvex penalty methods for sparse modeling in linear regression have been a topic of fervent interest in recent years. Herein, we study a family of nonconvex penalty functions that we call the trimmed Lasso and that offers exact control over the desired level of sparsity of estimators. We analyze its structural properties and in doing so show the following: 1. Drawing parallels between robus...
متن کاملTail and Nontail Memory with Applications to Extreme Value and Robust Statistics
New notions of tail and nontail dependence are used to characterize separately extremal and nonextremal information, including tail log-exceedances and events, and tail-trimmed levels. We prove that near epoch dependence (McLeish, 1975; Gallant and White, 1988) and L0-approximability (Pötscher and Prucha, 1991) are equivalent for tail events and tail-trimmed levels, ensuring a Gaussian central ...
متن کاملTwo-Stage Robust Optical Flow Estimation
We formulate optical flow estimation as a two-stage regression problem. Based on characteristics of these two regression models and conclusions on modern regression methods, we choose a Least Trimmed Squares followed by weighted Least Squares estimator to solve the optical flow constraint (OFC); and at places where this one-stage robust method fails due to poor derivative quality, we use a Leas...
متن کاملThe Symmetric Type Two-stage Trimmed Least Squares Estimator for the Simultaneous Equations Model
A two-stage symmetric regression quantile is considered as an alternative for estimating the population quantile for the simultaneous equations model. We introduce a two-stage symmetric trimmed least squares estimator (LSE) based on this quantile. It is shown that, under mixed multivariate normal errors, this trimmed LSE has asymptotic variance much closer to the Cramér-Rao lower bound than som...
متن کاملRobust Estimation of the Vector Autoregressive Model by a Least Trimmed Squares procedure
The vector autoregressive model is very popular for modeling multiple time series. Estimation of its parameters is typically done by a least squares procedure. However, this estimation method is unreliable when outliers are present in the data, and therefore we propose to estimate the vector autoregressive model by using a multivariate least trimmed squares estimator. We also show how the order...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1980